This article was downloaded by:
On: 24 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Liquid Chromatography \& Related Technologies

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title \sim content=t713597273

TLC Separation of some closely Related Synthetic dyes Impregnated Silica Gel Layers

S. P. Srivastavaa; R. Bhushana ${ }^{\text {a }}$; R. S. Chauhan ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, University of Roorkee, Roorkee, India

To cite this Article Srivastava, S. P. , Bhushan, R. and Chauhan, R. S.(1985) 'TLC Separation of some closely Related Synthetic dyes Impregnated Silica Gel Layers', Journal of Liquid Chromatography \& Related Technologies, 8: 7, 1255 1263
To link to this Article: DOI: 10.1080/01483918508067141
URL: http://dx.doi.org/10.1080/01483918508067141

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

TLC SEPARATION OF SOME CLOSELY RELATED SYNTHETIC DYES IMPREGNATED SILICA GEL LAYERS

S. P. Srivastava, R. Bhushan*, and R. S. Chauhan Department of Chemistry
University of Roorkee
Roorkee 247667, India

Abstract

Ammonium molybdate and Copper sulphate were found as good impregnants for improving the separation of some closely related thirty synthatic dyes on silica gel ' G ' layers using the solvent system BuOH $-\mathrm{AcOH}_{-\mathrm{H}_{2} \mathrm{O}}(25: 5: 10)$. Tables are presented to illustrate the comparison in resolution of dyes on plain and impregnated silica gel layers.

INTRODUCTION

A survey of literature reveals that very little work has been done on the separation of synthatic dyas using impragnated silica layers ${ }^{1,2}$. Howevar 5 rivastava and coworkers ${ }^{3}$ separated certain dyes on cadmium acetate impregnated layers. The present paper presents an efficient separation of 30 dyes on silica gel plates impregnated with Ammonium molybdate and Coppar sulphate using $\mathrm{BuOH}-\mathrm{AcOH}-\mathrm{H}_{2} \mathrm{O}(25: 5: 10)$ solvent system.

EXPERIMENTAL

The TLC plates of 0.5 mm thicknass ware prapared by spreading a slurry of a mixture of silica gal and 1.0% aq. solution of anmonium molybdate or 0.25% aq. solution of copper aulphate in the ratio 1:2 . The plates were driad for 24 hr at a constant temperature of $60^{\circ} \mathrm{C}$. Solution of dyes were prepared in distilled fater or water-athanol mixture. Two solvent systemss BuOH-AcOH$\mathrm{H}_{2} \mathrm{O}(25: 5: 10)$ and BuOH $50 \% \mathrm{NH}_{3}$-Dioxan ($25: 5: 10$) ware tried. The chromatograme were developed at a temperature of $35 \pm 1^{\circ} \mathrm{C}$. Spots were self visualisad.

RESULT AND DISCUSSION

A close axemination of data in Table I shows that some dyes show tailing on plain ailica gel plates in both the solvant aystems tried while on 0.25% copper sulphate impregnated plates tailing was observed por some dyes in the solvent aystems BuOH-50\% NH_{3}-Oioxan (25:5:10). However, no tailing of spots was observed on ammonium molybdate and copper sulphate impregnated Iayers using the solvent system $\mathrm{BuOH}-\mathrm{Ac} \mathrm{OH}-\mathrm{H}_{2} \mathrm{O}$ (25:5:10). Tables II and III show the improved separation of dyes on 1mpregnated layers. All dyes having $h R_{p}$ values differing by 4 or more units were considered as resolved and this was exhibited by putting ' R ' againat them in the table。 The ' 0 ' aymbol indicates that resolution was not possible due to overlapping of apots either because of less than 4 units of difference in hR palues or because of tailing of spots. As it is not possible to separate all the 30 dyes in a single run, the dyes were divided into the following groups for satisfactory separation on ammonium molybdate and coppar sulphate 1mpregnated layars in solvent syatem: BuOH-AcOH-H2 ${ }_{2}$ (25858 10)

On Amponiun Malybdate Imorecnatad Laver

A

table I

Dye		$\begin{gathered} \text { BuOH } \mathrm{AcOH}-\mathrm{H}_{2} \mathrm{O} \\ (20: 5: 10)^{2} \\ h R_{p} \\ \hline \end{gathered}$			$\begin{aligned} & \mathrm{BuOH}-50 \% \mathrm{NH}_{3}-010 \times a n \\ & (25: 5: 10)^{3} \end{aligned}$					
		$h R_{p}$								
		Plain	Iap.*	Impo**	plain	Imp*	Impo**			
	Rosaniline HCL				84	57	85	84	62	77
	Chrysoidine	83	69	84	93	86	87			
	Malachite green	65	49	65	99	97	95			
	Methyl rad	88	78	80	56	46	45			
	Crystal violat	72	61	73	97	95	97			
	Fuchsine basic	83	62	70	94	86	86			
	Auramine 0	73	52	82	86	71	$775 T$			
	Bromophanol blue	90	90	92	39	32	28			
	Eosine bluish	98	98	98	42	35	34			
10.	Bromocresol purple	84LT	85	87	32	23	22			
11.	Congo red	60	59	72	33	22	21			
12.	Titan Yellow	66	67	65	40	31	34			
13.	Aluminon	75LT	82	66	03	00	03			
14.	Alizarin	4551	33	60	05LT	00	00			
15.	Magnason	99	99	99	66	65	63			
16.	Oranga G	53	43	54	20	15	09			
17.	Bromacresol green	88	87	90	40	34	29			
18.	Phenol red	73	72	75	27	29	18			
19.	Thymol blue	85	84	86	73	74	63			
20.	Gentian Violet	73	52	75	67	47	71			
	Navilline Brilliant pink	97	95	96	97	92	93			
	Aniline blue	88	67	80	95	95	95			
23.	Dichlorofluroscain	98	98	97	21	16	13			
24.	Xylidina Ponceau	30	29	32	00	00	00			
25.	Benzopurpurine	62	55	60	38	28	24 MT			
26.	Mathylane blue	42	40	43	38LT	22	33			
27.	Nigrosin	00	00	00	00	00	00			
28.	Fuchsine acid	11	11	09	00	00	00			
29.	Light green	43	28	47	03	03	00			
30.	Alizarín blue	24LT	25	26	00	00	00			

[^0]N゙

 $\propto \propto \propto \propto \propto \propto \propto \propto \propto \alpha \propto \propto \alpha \propto \propto \propto \propto \propto \propto$

 $\propto \propto ๐ ๐ \propto$

 $\propto ロ \propto \propto \propto \propto \propto ロ \propto \propto \propto \propto \propto \propto \propto \propto$ $\propto \propto \propto$ $\propto \propto \propto$ 	

$\begin{array}{lcccccccccc}\text { Dye No. } & 28 & 29 & 14 & 16 & 20 & 1 & 5 & 22 & 4 & 19 \\ h R_{p} & (11) & (28) & (33) & (43) & (52) & (57) & (61) & (67) & (78) & (84)\end{array}$
823
(90) (98)
$\begin{array}{lccccccccc}\text { Dye No. } & 28 & 30 & 14 & 16 & 7 & 1 & 6 & 2 & 4 \\ \text { hR } & (11) & (25) & (33) & (43) & (52) & (57) & (62) & (69) & (78)\end{array}(85)$
11
(98)
On Copper Sulphate Impreqnated Layer

$$
\begin{array}{ccccccccccc}
\begin{array}{l}
\text { Dys }
\end{array} \text { No. } & 27 & 28 & 30 & 24 & 26 & 16 & 25 & 3 & 6 & 18 \\
\text { hRp } & (00) & (09) & (26) & (32) & (43) & 54) & (60) & (65) & (70) & (75) \\
4 & 1 & 17 & 21 \\
& (80) & (85) & (90) & (96)
\end{array}
$$

$$
\begin{array}{lcccccccccc}
\text { Dye No. } & 28 & 30 & 26 & 29 & 16 & 14 & 13 & 5 & 22 & 19 \\
\mathrm{hR}_{\mathrm{p}} & (09) & (26) & (43) & (47) & (54) & (50) & (66) & (73) & (80) & (86)
\end{array}
$$

$$
8 \quad 9
$$

(92) (98)

Dye No.	27	30	24	29	16	12	11	7	10		
hR											8
:---:											
(00)											
(26)	$(32)(47)(54)(65)(72)(82)(87)(92)$										

It is worthonile to point out that the hRp value is not altered when mixtures of these dyes are run. The behaviour of the dyes on impregnated plate depencs on the following factors:

1. Formation of a metal-dye intaraction product.
2. Differential solubility of the dyo and the interaction product in the solvant syatem employed.
3. Adsorption behaviour of the dye on the iapregnatad silica gel plate.

REFERENCES

1. Venkataraman, K., 'The analytical cheaistry of oynthetic dyes'. A Wiley Interscience Publication, U.S.A.e page 25-55, Chapter II (1977).
2. Copius-Pursboom, J.W. and Beakes, H.W., J. Chromatog.s 20. 43 (1965).
3. Srivastava, S.P., Chauhan, L.S. and Dua, V.K., J. Liq. Chromatography, 3(12), 1929 (1980).

[^0]: * Ammonium malybdata impregnation
 **Coppar oulphate impregnation
 ST-Slight tailing, MTHadium tailing, LT-Larg tailing. hR Values are in 10 cm . development.

